Atmospheric nitrogen deposition promotes carbon loss from peat bogs.

نویسندگان

  • Luca Bragazza
  • Chris Freeman
  • Timothy Jones
  • Håkan Rydin
  • Juul Limpens
  • Nathalie Fenner
  • Tim Ellis
  • Renato Gerdol
  • Michal Hájek
  • Tomás Hájek
  • Paola Iacumin
  • Lado Kutnar
  • Teemu Tahvanainen
  • Hannah Toberman
چکیده

Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from approximately 0.2 to 2 g.m(-2).yr(-1). We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO2) emissions and dissolved organic carbon release. The increased N availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of peat decomposition and mass loss on historic mercury records in peat bogs from patagonia.

Ombrotrophic peat bogs have been widely used to evaluate long-term records of atmospheric mercury (Hg) deposition. One of the major aims of these investigations is the estimation of the increase in atmospheric Hg fluxes during the industrial age compared to preindustrial fluxes. Comparability of Hg accumulation rates calculated from density, peat accumulation rates, and Hg concentrations requir...

متن کامل

Small scale controls of greenhouse gas release under elevated N deposition rates in a restoring peat bog in NW Germany

In Central Europe, most bogs have a history of drainage and many of them are currently being restored. Success of restoration as well as greenhouse gas exchange of these bogs is influenced by environmental stress factors as drought and atmospheric nitrogen deposition. We determined the methane and nitrous oxide exchange of sites in the strongly decomposed center and less decomposed edge of the ...

متن کامل

Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses?

• Peat bogs have accumulated more atmospheric carbon (C) than any other terrestrial ecosystem today. Most of this C is associated with peat moss (Sphagnum) litter. Atmospheric nitrogen (N) deposition can decrease Sphagnum production, compromising the C sequestration capacity of peat bogs. The mechanisms underlying the reduced production are uncertain, necessitating multifactorial experiments. •...

متن کامل

Modeling the past atmospheric deposition of mercury using natural archives.

Historical records of mercury (Hg) accumulation in lake sediments and peat bogs are often used to estimate human impacts on the biogeochemical cycling of mercury. On the basis of studies of lake sediments, modern atmospheric mercury deposition rates are estimated to have increased by a factor of 3-5 compared to background values: i.e., from about 3-3.5 microg Hg m(-2) yr(-1) to 10-20 microg Hg ...

متن کامل

Stable Carbon and Nitrogen Isotopes in a Peat Profile Are Influenced by Early Stage Diagenesis and Changes in Atmospheric CO2 and N Deposition

In this study, we test whether the δ(13)C and δ(15)N in a peat profile are, respectively, linked to the recent dilution of atmospheric δ(13)CO(2) caused by increased fossil fuel combustion and changes in atmospheric δ(15)N deposition. We analysed bulk peat and Sphagnum fuscum branch C and N concentrations and bulk peat, S. fuscum branch and Andromeda polifolia leaf δ(13)C and δ(15)N from a 30-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 51  شماره 

صفحات  -

تاریخ انتشار 2006